


duced. Note that the doubling method is a spe-
cial case of the adding method, where the reflection
and transmission functions of a stack of two slabs
of different optical properties are sought.

One important problem associated with solv-
ing the invariant imbedding equations is that they
belong to a class of so-called stiff differential equa-
tions. Therefore, it is extremely difficult to numer-
ically integrate them with any standard technique
such as the Runge-Kutta method even with an
extremely small step size.

The fast invariant imbedding method of Sato et
al. (1977) circumvents this problem by approxi-
mating the source term of each equation by low
order polynomials of optical height T measured
upward from the ground surface. This approxi-
mation is initially a linear function followed by a
piecewise quadratic polynomial of 7. These equa-
tions are then integrated semianalytically over 7.
As a result, we obtain a set of nonlinear implicit
equations for the reflection and transmission func-
tions at each integration step. These equations
can then be solved directly by successive itera-
tions.

However, the fast invariant imbedding method
still tends to be several times slower than the
doubling—adding method for atmospheres of mod-
erate or large optical thickness. In this study, we
therefore attempt to improve the computational
efficiency of the fast invariant imbedding method
by incorporating the doubling adding method to
initialize the reflection and transmission functions
of the lowermost layer.

2. Formulations

2.1. Basic Equations

For simplicity, we ignore the effect of polariza-
tion of radiation, so that the scalar approxima-
tion of the relevant quantities is valid. Let us also
restrict our argument primarily to the computa-
tional aspect of the reflection function in view of
remote sensing applications. Furthermore, we as-
sume that the entire atmosphere of optical thick-
ness 7r is suitably approximated by N homoge-
neous slabs, with the first slab being the lower-
most, and the N-th slab being the topmost as in
Kawabata and Hirata (1985). In addition, we as-
sume that the ground acts like a Lambert surface
of reflectivity Agea, which isotropically reflects in-
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cident light.

Let us measure the optical height 7 of a given
location from the ground, because we intend to
build the atmospheres of interest by stacking slabs
upward. Furthermore, let A7, denote the optical
thickness of the n-th slab. Then, the total optical
height Tio,n of the upper surface of the n-th slab
is given by

Ttot,n — Z AT‘-’." (1)
j=1

Hence, 7iot, v = 71, 1.€., the tatal optical thickness
of the entire atmosphere as shown in Fig. 1.

Ty, )

(| _
_ o "
© = Y _—~Top of the atmosphere

ground surface -[
with AI;"] n'

Fig. 1. Geometry for multiple scattering calcu-
lations. The incident light with flux 7F; per unit
area (designated by A) perpendicular to the direc-
tion of incidence given by the zenith angle #y and
the azimuth angle ¢ enters a point P on the top
of the atmosphere, and emerges with the intensity
I(p, ¢) in the direction B specified by the zenith
angle # and the azimuth angle ¢. The atmosphere
is plane-parallel and scattering—absorbing, and it
has total optical thickness 7. The zenith angles ¢
and fy are measured from the local upward normal
n, and the azimuth angles ¢ and ¢ are measured
counterclockwise when the upper surface of the at-
maosphere is observed from above. The atmosphere
is assumed to be stratified with N homogeneous
slabs of optical thickness A7, (n =1,2,--- N),
and it is bounded at its bottom by a Lambert sur-
face having reflectivity Agq. The straight line n’
indicates the downward normal perpendicular to
the bottom surface.

































